Further extension of an order preserving operator inequality
نویسندگان
چکیده
منابع مشابه
An Operator Extension of Bohr’s Inequality
T φ(At)dμ(t) for every linear functional φ in the norm dual A of A; cf. [3, Section 4.1]. Further, a field (φt)t∈T of positive linear mappings φ : A → B between C -algebras of operators is called continuous if the function t 7→ φt(A) is continuous for every A ∈ A. If the C-algebras include the identity operators, denoted by the same I, and the field t 7→ φt(I) is integrable with integral I, we ...
متن کاملAn Operator Extension of C̆ebys̆ev Inequality
Some operator inequalities for synchronous functions that are related to the c̆ebys̆ev inequality are given. Among other inequalities for synchronous functions it is shown that ‖φ (f (A) g (A))− φ (f (A))φ (g (A))‖ ≤ max {∥∥φ (f2 (A))− φ (f (A))∥∥ , ∥∥φ (g2 (A))− φ (g (A))∥∥} whereA is a self-adjoint and compact operator on B (H ), f, g ∈ C (sp (A)) continuous and non-negative functions and φ : B...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Inequalities
سال: 2008
ISSN: 1846-579X
DOI: 10.7153/jmi-02-41